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In this paper we are concerned with the problem of computing the minimum of
the L 2 norm taken over the interval (- 6, 6), 0 < (j ,,; 1/2, and over all non-trivial
linear combinations of the functions exp(2rrinli), 11=0, I, ... ; the coefficients in the
linear combination being restricted to 0, ± 1. Denoting the minimal L 2 nonn over
the interval (-,;), J) by 1(6), it is trivial by the orthogonality of the exponentials that
I( 1/2) is 1. The main result of the paper is to show that there is a neighborhood
of half for which I((j) is 1, despite the non-orthogonality of the exponentials in the
interval (- D, (j). The origin of this problem, arises from certain basic problems in
data communications, concerned with studying the behavior of the minimum L 2

distance between signals, when data is sent faster than the Nyquist rate over an
ideal bandlimited channel. The above mentioned result shows that there is no
degradation in the minimum distance for rates somewhat faster than the Nyquist
rate. t; 1Y90 Academic Pre~s, Inc.

1. INTRODUCTION

In this paper we are concerned with the problem of computing the mini
mum of the L 2 norm taken over the interval ( - b, <5), 0 < ~ ~ 1/2, and over
all non-trivial linear combinations of the functions exp(2ninO), n = 0, 1, ... ;
the coefficients in the linear combination being restricted to 0, ± t. The
origin of this problem, which is explained more fully after we state the
mathematical formulation, arises from certain basic problems in data
communications, concerned with the behavior of the minimal L 2 distance
between signals, when data is sent faster than the so-called Nyquist rate,
over an ideal bandlimited channel.

The mathematical formulation of the problem is as follows: For
o< ~ ~ 1/2, let

(
1 6 ) 1!2

l(~) = :~t 2~ L
6

Ip(OW d8 ,

108
0021-9045/90 S3.00
Copyright J~ 19YO hy AC~ldcmic Pres~. Inc.
All righb of repnxluction in any form n...-sefvcd.



COMPCTI~G THE MINIMUM D[STA~CE 109

where E= {'~=Z~o CkeZ;rikO I n=O, 1, ... ; Ck =0, ± 1, t:o= I}. We are inter
ested in the behavior of 1(6) for 0< <5 ~ 1/2. Note that by the orthogonality
of the exponentials, I( 1/2) = 1 and further that 1((5) tends to °as <5 tends
to 0, since for the polynomial p(e) = 1-- eZ;riIJ,

1 r 6

lim ~ I Ip(OW de = O.
b ~ 0 26. b

(More precisely p(O/2n) is a trigonometric polynomial as in [7]. We
simply call p(8) a polynomial; see the notation following Theorem 3.) Since
the exponentials are no longer orthogonal in L z( - b, b) for 0<<5 < 1/2, this
raises the question [5] as to whether there is a 60 < 1/2 such that I( (j) = I
for bo~ c5 ~ 1/2. The same question can also be asked regarding 1(6, L)
where the definition of I(b, L) is exactly the same as I(b) except that now,
when defining E, the condition on Ck is that ICk I ~ L (and Co = 1). In
view of the Stone--Weierstrass theorem it is somewhat surprising that the
following can be shown:

THEOREM I. There is a (jo(L) < 1/2 such that I(b, L) = I for
e5 o(L) ~ e5 ~ 1/2.

Before going further, we state the ongm and relevancy of the above
problem to data communications. It has been known since the 1920's that
Nyquist pulses

sin(nt/T)
g(t) = ntlT

can be used to send data without intersymbol interference over bandlimited
channels. Precisely, this means that one sends signals

if one wants to send binary data an = ± lover a channel of bandwidth
1/2T. The absence of intersymbol interference means that the peak of a
pulse g(t - nT) is at the zero-crossings of the other pulses g(t - mT): m #- n.
The above facts have played a major role in the design and implementation
of data transmission over the telephone network.

Now suppose we use pulses

sin nt/T
g(t) = A IT

ntl

(AO 0.1 1-~
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but send such pulses at intervals R = 2bTwith 0 < b < 1/2 instead of R = T.
We assume optimum processing of the received signals. We now encounter
intersymbol interference and it is natural to use the minimum L 2 distance
between received signals as a performance criterion. In this case it is easily
seen [5] that the minimum distance can be gauged in terms of 1(b), in the
case of binary data being sent. Thus 1J = 1/2 corresponds to the classical
Nyquist rate, and the question asked earlier about whether /(b) = 1 in a
neighborhood of i5 = 1/2 corresponds to asking whether there is a non
degradation of the minimum L 2 distance between received signals for rates
of transmission somewhat faster than the Nyquist rate.

Besides the above motivation, it should be mentioned that Forney [1]
and refinements by others [2,6, 10] havc shown that the bit error rate may
be tightly estimated in terms of the minimum distance for high signal-to
noise ratios. It seems probable that the techniques of this paper can be used
to compute the minimum distance when pulse shapes other than Nyquist
pulses are used. Since the bit error rate is a basic parameter in gauging the
performance of data communication channels, this would be of interest.

Returning to Theorem 1, we shall restrict ourselves to 1( (5), the proofs
being the same when /(1J, L) (which corresponds to multilevel signaling
instead of just binary signaling) is considered. Thus we show,

THEOREM 2. /( 15 ) = 1 for 0.4975 ~ b ~ 0.5.

Actually a far stronger result is true (see [3]): Let R(8)=
Li.o (- l)k e2nikO and let 0 < v< 1/2 be defined by (1/2v) J'~, IR(OW dO = 1.
Then v=O.401 ..., 1(b)= 1 for v~i5~ 1/2, and /(b)< 1 for c5<v because
(l/2i5)Jb 6IR(8Wd8<1 for i5<v. We prove Theorem 2 here, instead of
this stronger result because Theorem 2 is essential to proving the stronger
result and because the proof of the stronger result is considerably more
difficult. Moreover, many of the elements in the proof of Theorem 2 are
similar to those in the proof of the stronger result. Most importantly, the
stronger result is a result peculiar to Nyquist pulses and the proof
techniques in [3] do not seem to apply to other pulse shapes, while the
techniques here seem to apply.

It is not hard to obtain upper bounds on 1(i5), by numerically consider
ing various polynomials. This was done in [5], where the problem of
studying /(i5) was also proposed. Lower bounds on /(b) are considerably
harder to get and prior to the conference version of this paper [11] it was
only known that 1(6) #- 0 for all 0 < 6 < 1/2 [5].

Lastly we prove an extremal form of Theorem 2, which shows that the
only reason /(15)= 1 for i5o~6~ 1/2 and some i5o< 1/2 is because we have
to consider the trivial polynomial Q(8) = 1:



COMPCTI:-lG THE MINIMCM DISTA~CE 111

THEOREM 3. Given any 1~ M < ,/2 there is a 60 < 1/2 such that for
60 ~ b~ 1/2 and any polynomial Q(0) = LZ = 0 {;k e2nikO with Do = 1, Ck = O.
± 1, and Q(O) i= 1,

Our notation is standard other than noted helow. A polynomial in this
paper shall mean LZ =°Cke2nikO where Dk = 0, ± 1, Co i= 0. Also e2ni

l! is
denoted e(O) and for a function g,

,x
g(x)= I g(t)e(-tx)dt

oJ -:x:

2. NON-DEGRADATION OF THE MII'<IMU\f DISTA:-lCE

FOR RATES FASTER THAI'< THE NYQUIST RATE

In this section we give a proof, depending upon some auxiliary results
proved in the next section, of the result that there is no degradation in the
minimum distance between received signals, when signaling at rates some
what faster than the Nyquist rate. Theorem 2 follows at once by the defini
tion of I( b) from the following stronger result:

THEOREM 4. Let Q(O) = LO.;;k.;;n [;ke2nimkli where 0 = mo < In, < "', Ink
are natural numhers, and Ck = ±1. Excluding the trivial case of Q( 8) = ± 1.

(a) If the minimal gap between consecutive Ink is at least two then

for 0.393 ... ~ 15 ~ 0.5.

(b) If the minimal gap hetween consecutive mk is one and the first
place where the gap occurs the coefficients corresponding to the exponentials
with consecutive mk have the same sign, then

1 rb

215 . _b IQ( 0WdO ~ 1

for 0.38 ... ~ 15 ~ 0.5.



112 D. HAJELA

(c) If the minimal gap between consecutive mk is one and the first
place where the gap occurs the coefficients corresponding to the exponentials
with consecutive mk have opposite signs then

for 0.4975 ... ~ b ~ 0.5.

It is easy to see numerically, as mentioned in the Introduction, that [5]

1 °
2<5 f ° IR(OW de< 1

for <5~0.4 where R(e)=1+L;~1(-I)ie2"ijH. Thus (a) and (b) of
Theorem 4 give a better than expected answer and it is only (c) which does
not give as good an answer. It is also quite surprising that there is a dis
tinction between (b) and (c), which is real in view of the numerical example
above.

Proof (Theorem 4). First we consider part (a). If Q(e) has at least K
non-zero terms than as a consequence of a theorem of Ingham [4] it
follows that

Thus if K~ 5 and b~ 5/14 we are done. On the other hand assume that
Q(e) has at most four non-zero terms. It is shown in Lemma 5 that if a
polynomial pee) has exactly n non-zero terms,

/I

pee) = L f.k,e(k;e),
;~ 1

then

1 fO (Sin 2m))
2 ~ IP(eWdO~Bn(b)=n l-(n-l)--.

u --6 2nb

Thus,

~1
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for b~0.393 .. · which proves part (a). We turn to parts (b) and (c). Let
Q(O) = L%~o cke(mkO) where 0 = mo< ml < .,. and t:k = ±I. Let ko be the
minimal k such that mk + 1 - nlk = I and let P(O) = f.koe( -mkoO) Q(8).
Clearly,

and P(O) has the form

P(O) = 1+ l::e(O) + L I::k e(11k O),
k#O

( I )

(2)

where r., Gk= ±l, 11k~2 for k~l, nk~ -2 for k~ -I, 11k' l-nk~1 for
k ~ I, and nk - nk I ~ 2 for k ~ -1. This is simply by the minimality of ko,
and by (1) we need to only get lower bounds on P(O). By assumption in
part (b) we have c= I in (2) and in part (c) we have 1::= -1 in (2).
Part (b) follows from Lemma 6.

To see how part (b) follows from this, note that

(
I .J )12

2<5 J b IP( 0WdO ~ f( 6),

where f( IJ) is the estimate obtained in Lemma 6. Since the series defining
f( 6) conv~es uniformly, it follows that f( IJ) is continuous. Moreover
f( 1/2) = v 2. By the intermediate value theorem there is a 15 0 < 1/2 such
that f( IJ) ~ 1 for <5 0 ~ fJ ~ 1/2. A numerical analysis then shows that
1J0 = 0.38 . . .. Part (c) follows by a similar analysis from Lemma 7. This
finishes the proof of Theorem 4. I

Finally we prove the extremal form of Theorem 2, namely Theorem 3:

Proof (Theorem 3). With the notation as in the statement of
Theorem 3, first assume that the minimal gap between non-zero terms in
Q(O) is at least two. It should be clear that this case can be handled in
exactly the same manner as in the proof of Theorem 4(a). If the minimal
gap between non-zero terms in Q(O) is exactly one, then we may reduce to
a polynomial P(O) of the form in (2) exactly as in Theorem 4.

For P(O) in (2), with c = 1, we have the estimate in Lemma 6. Clearly
this estimate implies the result since the estimate goes to .j2 as IJ goes to
1/2. For P(O) in (2) with I:: = -1, we need an appropriate analog of
Lemma 7, which is provided by Lemma 10 (also see Lemma 9 and the
paragraph preceding it). I
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3. PROOF OF AUXILIARY RESULTS

In this section we prove the auxiliary results needed to prove the
theorems in the previous section.

LEMMA 5. (1/215) S~d IL,.;" (;k,e(k,8)1 2 de ~n(l- (n - 1)(sin 2nb/2nJ)),
for any ek, = ±1.

Proof Fix 1~k, < ... <kn' We have

1 ." I 1
2

2 J I tk,e(k;fl) dB=n+I
(j -~ i';" ''''J

I, j ~ n

where A= 2nb. Then,

).
". SinA(k,-k))
L Ck,l:k; J..(k - k)

t, l~fT I J
i7'j

~ ~ max 2: (sin i.j
I .. i~n j~n

j#i

(using the inequality Isin nxl ~ Inl [sin xl for integer n)

=~ (n-l) [sin ;[,
I.

which completes the proof. I
The next two lemmas give the estimates needed in parts (b) and (c) of

Theorem 4, respectively. They follow at once from Lemma 8, which may be
regarded as the basic estimate. We show how they follow from Lemma 8
and then gi ve a proof of Lemma 8.

LEMMA 6. Let e = 1 in (2). Then for P(£J) as in (2) and for 15 > 1/4,

(
1 JO )112 1 (I sin 27H5 ( 1 1)1- IP(OWdB ~----r= 1+-- ----

2<5 _" .../2 rr 28 2<5 - I

Isin 2n Jkl (1 1))
- k~2 n 2 15k - 1 2 15k + 1 .
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Proof Set ao= I, a1 = -I, and all other an = 0 In the result of
Lemma 8. We obtain

(' 1 ,/j )1:2 1 (I sin2no (1 1)1-I IP(O)1 2 dtJ ~------;= 11 +-- ---.-
2<5. b J 2 n 215 215 - I 1

_ I. isin 2n bnkl i_~_ _ 1 I).
k#O n 12611k 2bnk -ll,

Since n k + I - 11 k ~ Ifor k ~ Iand n k - nk I ~ 2 for k < 0, it follows that for
b> 1/4,

(~ fJ IP(BW dO)1/2~~ (II + sin 2nb (~__1_)1
2cS ". b J 2 n 20 2<5 - 1

_ I. Isin 2n 15k i ( 1 _ ~)
k ;, 2 n 2 15k - 1 2 ok

_ L Isin 2n 15k! (_ _1 + _1_))
k;, 2 n 2 ok + 1 2 bk

=_1 (11 + sin2nJ (~ 1 )1fi n 215 20-1 I

Isin 2n t5kj (I 1))
- k~2 n 2 6k - I - 2 6k + 1 .

Note that the series in question converge uniformly in J and also
absolutely (thus rearrangements are allowed). I

LEMMA 7. Let f. = -1 in (2). Then for P(O) as in (2) and f> > 5/12,

(~ r/j IP(ew de) 112 ~ j3 (1 1 - sin 2n15 (~+ I_
20 • - b JIO, IT 20 20 - 1

_~(_1+_1+_1))1
3 2b+h 1 2o+h2 215+b J I

'\ Isin 2n 15kl 1_1_ -I- I
L. 7[ 2 15k ' 2 bk - 1

k <;;-6. k '" 2

2(1 II)!
-3 26k+h

J
+2bk+h 2 +2I>k+h3 1

_ L Isin 2n 15k! 1_1_ + I
k c ,4 n 2 I>k 2 bk - I

-~ (2 b/+b 1 +2bk
1
+ h2 +2bk

1
+hJ!)
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(a) b l = 1, b 2 = 2, b 3 = 3, and A = { -4, -5} if In -II ~ 4.

(b) bl = 1, b2 = 2, b} = 4, and A = { - 3, -5} if n _ I = -3.

(c) b l =l, b2 =3, b}=4, and A={-2,-5} ifn_ l = -2, In 21~5.

(d) b l =l, b2 =3, b}=5, and A= {-2,-4} ifn 1= -2, n -2= -4.

Proof First note that all the series in question converge uniformly. This
is because

1 1 2 (1 1 1) P(x)
~+x-I-3 x+b

1
+x+b2 +x+b3 =Q(x)'

where Q(x) is a polynomial of degree 5 and P(x) is a polynomial of degree
3 and so,

I IP(2k<5)1

k<5. -6.k~2 IQ(2k<5)1

is finite. Also note since () > 5/12 none of the denominators, 2 <5k, 2 <5k - 1,
2 ok + bl , 2 <5k + b2 , 2 <5k + b3 vanish. We now show the estimate (a). The
others are obtained in an analogous manner. Set t:= -1, ao= 1, a l = 1,
a_I = -2/3, a 2= -2/3, a_}= -2/3, and all other an=O in the estimate
for Lemma 8. We get

(~ J6 IPI 2dO) 1.'2 ~ ,j3 (11 _sin 2ir<5 (~+ _1_
2<5 -6 JiO rr 2<> 2<5 - I

- ~ (2<5 ~ I + 2<5 ~ 2 + 2<5 ~ 3)) I
_ 2:: Isin 2rr <5n k l /_1_+ _1

k.. O rr 2bnk 2<>nk -l

-~ (2 bn: + 1+ 2 bn: + 2 + 2 <5n: + 3)1)

~ ,j3 (11 _sin 2rr<5 (~+_1_
JiO rr 2<> 2b - 1

- ~ (2b ~ 1+ 2<5 ~ 2 + 2<5 ~ 3)) I
" Isin 2rr bkl I 1 1
L. rr 2 15k + 2 bk - 1

k <5. -4, k" 2

- ~ (2 b~ + 1+ 2 b~ + 2 + 2 <5~ + 3)1)

since In -kl ~ 4 for k ~ 1 and nk ~ 2 for k ~ 1 if we assume that In _II ;:: 4.
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Note that In 11~4 also ensures 2fm k +i;iO for i=O, -I, 1,2,3 and
any k. I

LEMMA 8. Let P(H)=I+ee(O)+Lk;,leke(nkO)+Lk<ocke(nkfl) he (j

polynomial as in (2). Then, for any complex numhers an with

L·x ".' !alll"< +ex::,

Proof. Let g E L 2( - ex::, x) and suppose that g is supported in
[-1/2,1/2]. Let 1]=2c5 where O<c5::(I/2 and let gn(x)=g(l]x). Then
gn(x) = (1/1]) g(x/I]) so that the support of gn is [-c5, 15]. Moreover a
simple computation shows

Ilg"li ~ = 1/1/ :Igli~.

Thus gn E L 2( -c5, (5) and so upon applying the Cauchy-Schwartz
inequality, Planchercl's Theorem, the triangle inequality, and the inversion
theorem,

gl12 (~ib IP(O)!2 dO) 1:2
1]. b

= IIgnl12 (f
b

IP(O)1 2 dO) I"

~ Ir~,; (gn(O) + t;g,,(O) e(O) + k~O c;dn(8) e(llk O)) dol

~ If () C~n(8) + c;gn(8)e(O)) dol- k~O Ir,; g,,(()) e(nkO) dO

= Ig(O) + cg(I])1 - I Ig(l]ndl.
k"O

Therefore for any g E L 2( - ex::, ex::) and g supported in [ - 1/2, 1/2],

(
1 b ) I '2 I ( \

-2- f IP(OW dO ~-II-I' Ig(O) + t;g(I])I- L Ig(l/nd1 j
,.o ..bgI2 k#O

By the Paley-Weiner Theorem [7] such a g may be identified with an
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entire function g(z) with Ig(z)1 ~ Ae" Iz for some A> 0, and in turn such a
g(z) may be written as

sinnz ~ (-I)"g(n)
g(z)=-- L,

n z-n-oc

by Hardy's Theorem [7]. It follows that for any (a,,)~~ -ox:' with,
L OC

Xl la,,1 2 < +cc we may define a g(z) by letting g(n) = (-1 t a" and then

(;£5 f
o

IPI 2 dO y/2 ~ ( ~ !an I2 ) 1/2 (I ao+ C sin:n<5l2£5a~ nI
_ L Isin 2n 15nk l I~ a" I)·

k '" 0 n oc 2 15n k - n '

since Igll~=Locx Ig(nW· I
The next two lemmas are needed for Theorem 3. Note that in (2) the

negative nk in P(O) satisfy nk - nk I ~ 2 for k < °and n I ~ -2. In stating
Lemma 10 below, we will be interested in finite sequences (bdl,,;;k,,;/ of
positive integers. Given (nk) as in (2) we define the corresponding sequence
(hk)hh, recursively by setting b l = 1 and given bb bk+ I is the next
positive integer which is not In;1 for some j < O. Note that such a sequence
bk satisfies I ~ bk+ 1- bk~ 2. The following trivial lemma generates such
sequences, and the proof is left to the reader.

LEMMA 9. There are 2' I sequences (bd I ,,;; k,,;/ with b I = 1 and
I ~ bk+ 1 - bk~ 2. They may be generated by the following procedure: Given
any (Ck)~~\ with Ck=O, 1 let the corresponding (bd~~1 be b l = 1 and
bk f 1= bk+ 1 in case Ck = °and bk~ 1= bk+ 2 in case Ck = 1.

We may now get the estimate we want.

LEMMA 10. Let c= -1 and let P(O) be as in (2). Then for any I~ 1 and
1/2 - 1/41 < 15 ~ 1/2,

(;15 rIi IP({JW dOy/2

~ min (2 + :j/)1/2 (1 1- sin:n15 (2
1
15 + 26 ~ 1-~ it 215 ~ bJi

Isin 2n 15k I I 1 1 2 / I I)
L n 2 15k + 2 15k - 1-/ )I~1 2 15k + bi 'Ikl;;' 2

k~ { h,. -b2 . .." h{}
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where the minimum is over the (hk)~ = I in Lemma 9. Thus given I ~ M < v'2
there is a 15 0 < 1/2 such that lor 15 0 ~ c5 ~ 1/2,

Proof As in the proof of Lemma 7 the series in question converge
uniformly. Let pte) be as in Theorem 2. Let (hd~ = 1 be such that the hk lie
in between the consecutive terms of In)i for j < 0 with hI = 1.
1~ hk + I - bk ~ 2. In the estimate of Lemma 8 set ao = 1, a, = 1, a -k = -2/1
for k = hI' ..., bl' and all other all = O. We get

since nk ~ 2 for k ~ I and nk ~ -2 for k ~ -1. Moreover note that none of
the denominators 2 15nk + hj are zero by the choice of bj for 15 > 1/2 - 1/41.
The last part of the statement of the theorem is obvious by continuity and
by making 1 sufficiently large. I
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